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ABSTRACT

In this paper, the combination of two algorithms, a cell counting algorithm and a velocity algorithm based on a Digital Particle Image
Velocimetry (DPIV) method, is presented to study the collective behavior of micro-particles in response to hydrodynamic stimuli. A wide
experimental campaign was conducted using micro-particles of different natures and diameters (from 5 to 16 μm), such as living cells and
silica beads. The biological fluids were injected at the inlet of a micro-channel with an external oscillating flow, and the process was moni-
tored in an investigated area, simultaneously, through a CCD camera and a photo-detector. The proposed data analysis procedure is based
on the DPIV-based algorithm to extrapolate the micro-particles velocities and a custom counting algorithm to obtain the instantaneous
micro-particles number. The counting algorithm was easily integrated with the DPIV-based algorithm, to automatically run the analysis to
different videos and to post-process the results in time and frequency domain. The performed experiments highlight the difference in the
micro-particles hydrodynamic responses to external stimuli and the possibility to associate them with the micro-particles physical proper-
ties. Furthermore, in order to overcome the hardware and software requirements for the development of a real-time approach, it was also
investigated the possibility to detect the flows by photo-detector signals as an alternative to camera acquisition. The photo-detector signals
were compared with the velocity trends as a proof of concept for further simplification and speed-up of the data acquisition and analysis.
The algorithm flexibility underlines the potential of the proposed methodology to be suitable for real-time detection in embedded systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138587

I. INTRODUCTION

Up to date, the most sophisticated laboratory equipment
ensuring a complete analysis of particles in suspension is a Flow
Cytometer.1 It is routinely used in diagnostic and research fields to
detect physical and chemical features of cells2 and to count them.

In this paper, the combination of two algorithms, a cell count-
ing algorithm and a velocity algorithm based on a Digital Particle
Image Velocimetry (DPIV) method, is presented to investigate the
collective behavior of particles, in micro-channels or chambers, in
response to hydrodynamic stimuli. The proposed data analysis pro-
cedure offers the advantage to extract automatically the information
on the number of particles, flowing in an investigated area in time,
and their velocities. A set of experiments were carried out to vali-
date the method proposed in this paper and the results obtained
show a significant variation in the hydrodynamic responses to

external stimuli and the possibility to associate them with the parti-
cles’ physical properties. The simplified optical setup and the algo-
rithm flexibility, make this methodology suitable for real-time
detection in embedded systems for the study of cell interaction, as
in the Lab-on-a-Chip. A microfluidic-based system able to detect
variations in number, concentration, and shape of particles as well
as their hydrodynamic properties would considerably improve the
identification of various physiological and pathological conditions.
The consistency of a biological fluid may change depending on the
intrinsic properties of the particles and fluids used, or alterations
induced by a disease of the organisms examined may occur. The
blood is an example, which is composed of cells with distinguish-
able traits like size, shape, surface characteristics, compactness, and
plasma composition.3 All these listed items affect the differentiated
migration dynamics of specific blood particles/cells. Some
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pathological diseases, such as atherosclerosis or thrombosis, can be
associated directly with blood disorders altering the cells’ move-
ment, whereas others, like anemia or leukemia, affect the cells’ pro-
liferation and indirectly the flow.4,5

For over a century, manual cell counting with the use of a
cytometer and a microscope has been the prevalent technique in
laboratories, despite requiring bulky equipment and being a time-
consuming approach. As an alternative to manual counting, auto-
mated cell counters based on the Coulter Counter principle have
been developed and become commercially available.6 The limits in
their use are to require bulky and costly equipment and a large
number of samples and reagents. Advances in microfluidics have
shown promising results in the development of low-cost and porta-
ble Lab-on-a-Chip devices with higher throughput, sensitivity, and
accuracy.7–9 In the miniaturization efforts, different technological
issues have arisen in relation to the biological or chemical applica-
tion contexts10–13 and to the detection approaches.14–17 It is signifi-
cant to mention the recent advancement in the use of microfluidics
for the study of physiological processes as in the case of
organs-on-chip,18,19 and in biology as for the cellular analysis20,21

and cell-to-cell interactions.22

This work aims to develop an approach for the investigation
of micro-particles moving in micro-channels or chambers suitable
for Lab-on-a-Chip implementation. To do that, a wide experimen-
tal campaign was carried out, using micro-particles of different
natures, as living cells and silica beads, and with different physical
properties, such as density and size (from 5 to 16 μm). An external
oscillating flow was imposed at the inlet of a micro-channel and
the process was continuously monitored in a test area simultane-
ously by using a CCD camera and a photo-detector. The videos
and the signals acquired were analyzed to determine information
correlated to the changes in time of the micro-particles number
and their velocities.

The application of flow visualization in biological systems is
becoming increasingly common in studies ranging from intracellu-
lar transport to the movements of whole organisms. In cell biology,
the standard method for measuring cell-scale flows and/or dis-
placements has been Digital micro Particle Image Velocimetry
(micro DPIV).23–25 More and more researchers are recently looking
to live-cell imaging to provide a quantitative understanding of cel-
lular mechanisms. In Ref. 26, a quantitative phase velocimetry
(QPV) approach, which uses the principle of PIV, was developed to
track the velocity flow of material within a single cell, and in
Ref. 27, a live scanning particle-imaging velocimetry (LS-PIV) was
implemented to quantify the blood velocity in live mice suffering
from a cerebral arteriovenous malformation. They detect the blood
velocities and exaggerated pulsatility along the abnormal vascular
network in these animals. In Ref. 28, a free and open-source solu-
tion for performing efficient and robust quantification of collective
cellular migration in the increasingly popular 3D dynamic data sets
in life sciences are developed. In Ref. 29, the PIV approach was
used for analyzing the dynamics of in vivo models of collective
migration. That evidences the relevance of the topics and the chal-
lenging open issues around them and the effort in finding a
straightforward methodology for velocity cell detection.

In this work, the micro-particle velocities were computed by
taking into account the DPIV method based on image analysis,

and the micro-particles number was obtained by a custom counting
algorithm. The DPIV methodology was initially used by the
authors to study the collective behaviors of RBCs in a micro-
channel in unsteady conditions.30,31 Starting from that, in this
paper, a further development of this approach is presented to
extract automatically the information on the number of particles,
flowing in an investigated area in time, and to detect their veloci-
ties. Working in the MATLAB environment, it was possible to
easily integrate the counting algorithm with the DPIV-based algo-
rithm, to automatically run the analysis to different videos, and to
post-process the results in time and frequency domain, showing the
suitability for automatic classification of micro-particles in biologi-
cal fluids. In the considered experiments, it was possible not only
to detect the hydrodynamic behavior of the micro-particles, but
also to correlate this to their physical features, such as the size and
the density of micro-particles.

In the last few decades, image processing-based methods32–35

and microfluidics-based systems for particle counting and detection
have been developed to overcome the barriers associated with con-
ventional methods,36,37 but the use of real-time image processing is
still very challenging38 due to hardware and software requirements.
In order to overcome these issues for the development of a real-
time approach, in this work, the possibility to detect the flows by
the use of photo-detector signals as an alternative to camera acqui-
sition has also been investigated. The optical detection by signals
was proved to be useful for characterizing the flow non-
linearity,39,40 it was possible for the development of a real-time
velocity detection system for the slug flow analysis in a micro-
channel41 and the realization of a micro-optofluidic flow detector
for the investigation of biological and chemical samples on chip.42

In this paper, the signals, collected by the photo-detector,
were compared with the velocity trends obtained by the
DPIV-based algorithm as a proof of concept for a further simplifi-
cation and speed-up of the data acquisition and analysis, based on
a simpler optical detection than the video recording needed for the
on-chip implementation. The paper is organized as follows: Sec. II
describes in detail the experimental setup, the campaign carried
out and illustrates the procedures implemented to count the micro-
particles and calculate their velocity. Section III presents the results
obtained from the counting of the micro-particles, the trends
obtained from the DPIV-based algorithm and their correlation,
the comparison between the velocity trends obtained from the
DPIV-based algorithm and the signals obtained from the photo-
detectors, and finally the hydrodynamic responses of the micro-
particles in the time and frequency domains under different
experimental conditions, discussing their correlation with the prop-
erties of the micro-particles.

II. MATERIALS AND METHODS

A. Experimental setup

The experimental setup is composed of a syringe pump, a
microfluidic chip, and an opto-mechanical system. The syringe
pump (neMESYS low-pressure module, Cetoni GmbH, Korbussen,
Germany) was used to inject a fluid mixed with micro-particles in
a Y-junction squared rectilinear micro-channel in cyclo-olefin
copolymer (SMS0104, Thinxxs, Zweibrücken, Germany), with a
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length of 16mm and a square cross section with a side of 320 μm.
Its geometry is shown in Fig. 1(a). The microfluidic process was
analyzed in an investigated area at a distance of 8mm from the
inlet, illuminated by a white light. A photo-detector, labeled PH
(SM05PD1A, Thorlabs, Newton, NJ, USA), with an operating
wavelength of 350–1100 nm, connected to an acquisition board
(BNC-2110, National Instruments, Austin, TX, USA) and a CCD
camera (DCU224, Thorlabs, Newton, NJ, USA), with a resolution
of 1280� 1024 pixels (pixel size of 4:65 μm, square), included both
in the opto-mechanical system (Thorlabs, Newton, NJ, USA) allow
a simultaneous process monitoring. A magnification of 10x (PLN,
Olympus, Tokyo, Japan), with a numerical aperture (NA) of 0.25, a
working distance of 10.6 mm, and a depth of focus of 440 μm has
been used. A distance of 3:5mm between the focal plane and the
objective has been considered and due to the geometry of the
micro-channel being square-sectioned, there is no loss of visual
field, as is usual the case with cylindrical micro-channels.43 A PC
with Intel® Core™ i7-6500U CPU @ 2.50 GHz 2.59 GHz, RAM
8Gb and operative system 64 bit was used for the analysis.

The data were recorded for about 75 s, with a video frame rate
of 60 frames per second, around 4:500 frames per experiment, and
a sampling frequency of 1 kHz for the photo-detector acquisition.
A detailed description of the opto-mechanical setup is reported in
Ref. 44. A flow chart and some pictures of the experimental setup
are shown in Figs. 1(b) and 2(a). In particular, Figs. 2(b) and 2(c)
show a zoom of the micro-channel together with the objective lens
and a zoom of the photo-detector position with an image of the
photo-detector used. In Fig. 3, a scheme showing the CCD resolu-
tion, the photo-detector resolution, and the region of interest
(ROI) selected in the performed experiments and analyzed is
shown.

B. Experimental campaigns

The microfluidic chip was fed by an oscillating flow. The bio-
logical fluids employed for the experiments were obtained by dilut-
ing some micro-particles in a saline solution, the phosphate
buffered saline (PBS, a density of 1072 kg=m3). The micro-particles
diluted with the PBS were of two types: live cells and artificial
beads. The live cells, of eukaryotic origins, were the yeast cells of
Saccharomyces cerevisiae and the human epithelial HeLa cells. The
relevant difference between these two types of cells concerns their
dimension: the yeast cells have a diameter of 5 μm while the human
cells have a diameter of 16 μm. The artificial beads were silica beads
with a diameter of 6 μm. The number concentration of particles,
diluted in 10ml of PBS fluid, was 1� 105 for the silica beads,

1� 107 for human cells, and 1� 108 for the yeast cells. The physi-
cal properties of the particles, such as mass, radius, volume, and
density, are summarized in Table I.

Initially, a single-phase PBS flow, in the absence of micro-
particles, was recorded to quantify the effect of the fluid background
in the images and the signals. The PBS flow was injected at the inlet
with an oscillating flow at a frequency of fi ¼ 0:1Hz and an ampli-
tude of A ¼ 0:1ml=min. The following 22 experiments conducted
are summarized per type of cells in Table II. The micro-particles
flow was fed into the micro-channel using an oscillating flow at a fre-
quency of fi [ {0:1; 0:2}Hz and an amplitude strength varying in
the range A [ {0; 0:2}ml=min. For the three categories of particles,
five equal experimental conditions were considered with fi ¼ 0:1Hz
and A [ {0:04; 0:05; 0:07; 0:1; 0:15}ml=min. Then, for the yeast
cells, the campaign was extended considering three other experi-
ments with fi ¼ 0:1Hz and A [ {0; 0:03; 0:2}ml=min and four
experiments with fi ¼ 0:2Hz and A [ {0:05; 0:07; 0:1; 0:2}ml=min.

C. Micro-particle counting algorithm

In diagnostic and research life science laboratories, cell count-
ing is a common task for any cell-based assay. The less expensive
procedure is to count the cells using a reusable hemocytometer by
visualizing them with a bright field optical microscope.45 To reduce
the systematic and random error of the manually count and to
improve the statistic values, these approaches have been automated
with micro-particles imaging analysis acquisition based on
enhanced technologies and paired with a sophisticated micro-
particles counting algorithm.

The proposed procedure provides a continuous counting in
time of the micro-particles number in the investigated area, avoid-
ing any manual and individual selecting of the frames to be
studied. It analyzes automatically the video, frame by frame, counts
the number of particles per frame, and collects this information in
a signal.

The micro-particles counting algorithm was implemented in
the MATLAB environment and the fundamental steps imple-
mented are listed in the flow chart in Fig. 4. The images, to be ana-
lyzed, are loaded automatically in the platform and the first step is
the definition of the ROI in the images, which will be taken into
account for all the duration of the analysis.

After the ROI definition, each image (defined as variable
“image”) is converted into the grayscale (defined as “gray image”)
by using the function “rgb2gray(image).” In addition, to adjust the
images’ intensity values to the grayscale images, the function
“imadjust(gray image)” is applied. Then, a Gaussian filter is

FIG. 1. (a) The Y-junction squared rectilinear micro-channel with a diameter of 320 μm and (b) the flow chart of the experimental setup.
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applied to the new images, by using the function “imgaussfilt
(gray image, σ),” to smooth the images and reduce the noise
(“filtered image”). The arguments of this last function are the gray-
scale images (“gray image”) to be filtered and sigma (σ = 5), which
is the standard deviation of the Gaussian distribution and defines
the filter size. The difference between the grayscale and the filtered
images contains the noise removed in the filtering phase
(“diff image”). However, the locations of the micro-particles are
still visible in these noise images as regions of increased variability.
At this point, the new images (“diff image”) must be converted
into binary images (“binary image”), by using the function “imbi-
narize(diff image, th1),” which creates binary images by selecting a
threshold value automatically and variable at each circumstance
(“th1 = graythresh(diff image”)). All the values above the

threshold will be replaced with 1 and all the others with 0. As men-
tioned before, the threshold (“th1”) is not a fixed value, but
changes for every image, and it is calculated through the function
“graythresh(diff image).” Finally, the function “bwboundaries
(binary image,“noholes”)” was used to trace the exterior boundaries
of objects in the binary images. The arguments of this function are
binary images (“binary image”) and the “noholes” option, which
specifies searching only the boundaries of objects by excluding
noholes, providing better performance. The function returns a cell
array (“[B,L,N]”) with the boundaries pixel locations (“B”), a label
matrix (“L”) where the objects are labeled and the number of
micro-particles found (“N”). After that, a check on the detected
micro-particles is carried out, to eliminate possible artifacts. With
the function “regionprops (L,“Area,”“Centroid”),” it is possible to

FIG. 2. (a) Picture of the opto-mechanical experimental setup. (b) Closer picture showing the chip in which it is included the rectilinear micro-channel together with the
10x magnification system and the illumination system. (c) Closer picture of the photo-detector position and a cartoon of the photo-detector used for monitoring the micro-
particles flow.
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measure some micro-particle properties such as the area, the
center, and the circularity. Therefore, it is possible to verify if
the detected particles have an appropriate area, consistent with the
micro-particle size investigated, defining the minimum and
maximum dimensions of the searched objects in pixels, to count
among the found micro-particles only those that have an appropri-
ate size. For the silica beads and the yeast cells, the minimum area
was set to 1 pixel and the maximum area to 2 pixels. For the
human cells, the minimum area to 3 pixels and the maximum area
to 4 pixels. There is another threshold parameter (“th2”) that needs
to be set based on the shape of the objects. In the experimental
campaigns carried out, due to the circular geometry of the micro-
particles investigated, the threshold parameter (“th2”) was set to 1,
to indicate a perfect circle. It is possible to set this threshold differ-
ently based on the requirement of the analysis. After defining this
parameter, the exterior boundaries of particles are traced and the
number of particles is found.

Using the presented algorithm, the same for all the micro-
particles investigated, the detection of micro-particles results to be
simple, fast, and accurate.

D. Micro-particle DPIV-based algorithm

The data acquired in video format were processed by a
DPIV-based automatic algorithm to have instantaneous velocity
measurements and visualizations. The time-varying velocity vector
maps obtained, showing the displacements of the particles in time
in an investigated area, were then processed to extract the mean of
the migration velocity per experiment. Thanks to this approach, the
complexity of the standard Flow Cytometer equipment is shifted in
the algorithm implementation.

Initially, each video is decomposed into frames and a specific
ROI is set. The ROI is the portion of the monitored area that was
considered for the hydrodynamic cell flow investigation. The ROI
was set equal for the experiments using the same cells. The DPIV
analysis was conducted by a three-passes discrete Fourier transform
(DFT) in frequency domain as implemented by the PIVlab tool.46

The three interrogation areas in pixel were chosen as follows:
Area1 ¼ 64, Area2 ¼ 32, and Area3 ¼ 16. The step size of the
sampling window used in the DPIV method to calculate the veloci-
ties of the micro-particles was set to half of the last interrogation
area (Area3 = 16 pixels), resulting in a step size of 8 pixels. The
details of the DPIV setting have already been presented by the
authors in Ref. 30.

In Fig. 5, the algorithm steps from the extraction of the video
frames to the computation of the micro-particle velocity trends are
presented. On the left three frames, one per cell type are reported,
respectively, for the yeast cells (5 μm), the human cells (16 μm),
and the silica beads (6 μm). The ROI selected is highlighted in
yellow. On the right, for the human cells, a frame at a time instant
�t of the time-varying velocity vector map V(i, j, �t) with i and j
referring to the ithapex and jthapex pixel position in the image ROI,
obtained by the DPIV processing, is considered. The velocity

FIG. 3. Picture showing the CCD resolution, the photo-detector resolution, and
the region of interest (ROI) acquired and analyzed in the performed
experiments.

TABLE II. The experimental campaigns.

Micro-particles
Frequency fi

(Hz) Amplitude A (ml/min)

Yeast cells 0.1 0, 0.03, 0.04, 0.05, 0.07, 0.1,
0.15, 0.2

0.2 0.05, 0.07, 0.1, 0.2
Human cells 0.1 0.04, 0.05, 0.07, 0.1, 0.15
Silica beads 0.1 0.04, 0.05, 0.07, 0.1, 0.15

TABLE I. The physical properties of the micro-particles.

Micro-particles Mass (kg) Radius (m) Volume (m3) Density (kgm3)

Yeast cells 7.37 × 10−14 2.5 × 10−6 6.54 × 10−17 1126
Human cells 2.23 × 10−12 8.0 × 10−6 2.14 × 10−15 1040
Silica beads 1.36 × 10−13 3.0 × 10−6 1.13 × 10−16 1200
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spatial distribution on the horizontal and vertical directions are
Vx(i, j, �t) and Vy(i, j, �t), respectively. Finally, those are spatially
averaged, in order to obtain the mean velocity values hVx(�t)i and
hVy(�t)i. This procedure repeated for all the frames of the time-
varying vector map gives two signals representing the mean velocity
trends on x and y directions vs time, respectively hVx(t)i and
hVy(t)i obtained as shown in Eqs. (1) and (2),

hVx(t)i ¼ 1
m

Xnx

i¼1

Xny

j¼1

Vx(i, j, t), (1)

hVy(t)i ¼ 1
m

Xnx

i¼1

Xny

j¼1

Vy(i, j, t), (2)

where nx and ny are the number of pixels along the horizontal and
vertical region of interest dimensions and m ¼ nx � ny is the total
number of pixels in the region of interest analyzed. Looking at the
movement of the micro-particles along the micro-channel and
based on the image orientation, the dominant velocity component
is the vertical one. The micro-particle flows flowed from the top to
the bottom of the investigated area and vice versa. In particular, the
trend of the vertical velocity component hVy(t)i shows the period-
icity of the oscillating input flow imposed and no-periodicity can
be detected in the trend of the horizontal velocity component
hVx(t)i. For this reason, the following analysis is related to the
hVy(t)i.

The different number of particles in the investigated area can
significantly influence the velocity value obtained by the DPIV
algorithm; therefore, the velocity signals were normalized to the
average number of particles obtained by the implemented micro-
particle counting algorithm, described in detail in Sec II C. In par-
ticular, this normalization was applied due to the fact that the
density of micro-particles in each experimental condition was dif-
ferent, by applying a normalization it is possible to compare the
results obtained. The micro-particles hydrodynamic response in
time domain was evaluated by computing the range of the velocity
signal hVy(t)i, as in Eq. (3),

RangehVy(t)i ¼ max (hVy(t)i)�min (hVy(t)i): (3)

Then, the values of the velocity range (RangehVy(t)i) per experi-
ment were normalized with respect to the average number of
micro-particles (hNp(t)i) computed in the investigated area per
experiment.

III. RESULTS AND DISCUSSION

A. Trend of micro-particle counting and velocity

The two algorithms were used to analyze the data collected in
the experimental campaigns, allowing to investigate how the hydro-
dynamic response of the micro-particles could be correlated with
their physical properties and characterize their collective behavior.
To compare the results obtained for different cell types, the average
number of micro-particles hNp(t)i and the velocity signals hVy(t)i
per experiment, computed by the counting algorithm described in

FIG. 4. The flow chart of the algorithm implemented to count the micro-particles
in the MATLAB environment.
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Sec. II C and the DPIV-based algorithm described in Sec. II D,
were considered. The computational time required for the analysis
of 1000 video frames was 2 min for the counting algorithm and 1 h
for the DPIV-based algorithm.

In Fig. 6, for human cells and yeast cells in the experimental
condition with {A ¼ 0:1ml=min, fi ¼ 0:1Hz} in a time interval of
about 16 s, the frames with the micro-particles detected and the
signals Np(t) reconstructed by counting instantaneously the
number of micro-particles over time are plotted.

It was noted that the counting of micro-particles becomes
more difficult with the standard platform, when the color within
the particle is similar to the background and the micro-particle
boundaries cannot be properly defined, as in the case of human
cells (16 μm). This has been overcome by the proposed algorithm,
as the analyzed frame in Fig. 6(a) shows.

For its validation, the results obtained were compared with the
one of a standard platform ImageJ,47 widely used in this field for
particle counting single images. The steps performed in both the
cases are similar. Twelve frames per experiment (four in the first
part of video, four in the last part, and four in the middle) were
selected and the number of micro-particles counted with the follow-
ing methods: the ad hoc counting algorithm presented in this paper,
the standard method through ImageJ, and manually. Considering
the experiments with yeast cells and silica beads, the variation
detected between the two methods was of the order of 10% in favor
of the proposed ad hoc micro-particle counting. Compared to manu-
ally counted micro-particles, there is a 2% difference with the
proposed ad hoc micro-particle counting algorithm.

The mean number of all the micro-particles, counted by the
implemented algorithm for each experiment, is reported in
Table III.

It is worth underlining that this proposed algorithm not only
is easily adaptable to different operative conditions with a higher
level of precision, but it is also able to analyze a video automati-
cally, allowing to obtain the changes in the number of micro-
particles in time for all the experiment duration.

In Fig. 7, the velocity trends hVy(t)i, obtained by the
DPIV-based algorithm, in a time interval of 56 s for each type
of micro-particles for the experimental condition {fi ¼ 0:1Hz,
A ¼ 0:1ml=min} have been plotted. The oscillating trend of the
velocity highlights the effects induced by the oscillating input flow.
In particular, in Fig. 7, considering the same experimental condition,
the amplitude of the velocity trend for the beads is lower than that
found in the human and yeast cells due to the higher value of fluid
density. Being heavier, they tend to lay down on the bottom of the
micro-channel and offer greater resistance to the dragging force due
to the density mismatch between the PBS fluid and the beads.25

Then, a comparison between the trends of the average velocity
hVy(t)i and the trend of the number of micro-particle Np(t) during
some experiments, to detect the effects of a variable input force in
the particle flow displacement, was performed. In Fig. 8, as an
example the experimental condition {A ¼ 0:15ml=min,
fi ¼ 0:1Hz} with the yeast cells is shown. In Fig. 8(a), the trend of
the hVy(t)i is compared with the trend of the Np(t). Three-time
instants (t1, t2, t3) are considered and the relative frames
and velocity fields were plotted, particularly it can be observed that

FIG. 5. The algorithm steps of the procedure for the video processing based on DPIV analysis. On the left column, the extraction of the video frames. On the right column
for the human cells, in sequence the instantaneous velocity vector maps V (i, j, �t), its decomposition in the horizontal and vertical velocity components
{Vx (i, j, �t), Vy (i, j, �t)}, and the mean velocity trends {hVx (t)i, hVy (t)i}.
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• in t1, the number of particles is in a maximum Np(t1) ¼ 300
and the hVy(t)i is near to 0mm=s [see Fig. 8(b)];

• in t2, the number of particles is in a minimum Np(t2) ¼ 150
and the hVy(t)i is negative [the particles are flowing from the
bottom to the top, see Fig. 8(c) in blue arrow];

• in t3, the number of particles is in a minimum Np(t3) ¼ 150
and the hVy(t)i is positive [the particles are flowing from the top
to the bottom, see Fig. 8(d) in red arrow].

That is a consequence of the oscillatory hydro-dynamical stimuli
imposed by the syringe pump flow rate: the particles tend to be
highly concentrated when the stimulus reaches the zero value, con-
versely, they are dispersed during the rising phase of the stimulus
(independently of the strength of the directionality).

To evaluate the hydrodynamic responses of the micro-
particles, a comparison of the two parameters selected for the char-
acterization of the processes, the range of the average velocity
(RangehVy(t)i), and the amplitude in the peak spectrum at the
stimulus frequency (Apk) both un-normalized and normalized to
the average number of particles (hNp(t)i) in the experiments was
carried out in Secs. III C and III D.

B. Trend of micro-particle tracking and velocity

In order to overcome the hardware and software requirements
for the development of a real-time approach through a CCD
camera acquisition, the possibility of detecting the flows by using a
photo-detector, which converts the acquired optical signal into an
electrical signal, was investigated. In the implemented experimental
setup, the photo-detector detects and measures the light variations
acquired during the passage of the micro-particles inside the micro-
channel. Then, it can convert them into voltage variations. The
signals collected by the photo-detector were filtered by applying a
notch filter at 50Hz to remove the power supply component and
down-sampled at 60Hz in order to have the same sampling fre-
quency as the camera. The photo-detector signals, after being filtered
and down-sampled, have been compared with the velocity trends
obtained by the DPIV-based algorithm as a proof of concept for
further simplification and speed-up of the data acquisition and anal-
ysis. In Fig. 9, on the left column, the velocity trends and the photo-
detector signals are superimposed for the yeast cells in the two
experimental conditions with {A ¼ 0:1ml=min, fi ¼ 0:1; 0:2Hz}. It
is worth noticing a synchronous oscillating behavior with a phase
shift due to the rounding of the down-sampling. That is confirmed
by the spectral analysis on the right column shown in Fig. 9. The
two frequencies of the external oscillating flow, imposed at the inlet,
are undoubtedly detected and driving the changes of the cell flows.

C. Micro-particles classification by hydrodynamic
response in time

The micro-particles hydrodynamic response in time domain
was evaluated by computing the range of the velocity signal hVy(t)i
as shown in Eq. (3). Figure 10(a) shows the values of the velocity
range (RangehVy(t)i) per experiment and Fig. 10(b) shows the
values of the velocity range (RangehVy(t)i) per experiment normal-
ized with respect to the average number of micro-particles
(hNp(t)i) computed in the investigated area per experiment. Each
point in the curve has been obtained as an average of the velocity
values obtained under dynamical conditions maintained for 75 s.
The stability of the signal ranges, shown in Fig. 7, confirms the
robustness of the analysis in time and its reproducibility. In Fig. 10,
the three curves are, respectively, for the micro-particles considered

FIG. 6. The frames with the micro-particles detected marked in red circles and
the mean number of micro-particles counted using the implemented algorithm
per experiment: (a) human cells and (b) yeast cells in the experimental condition
with {A ¼ 0:1 ml/min, fi ¼ 0:1 Hz}.
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(silica beads, yeast cells, and human cells) and each point per curve
is correlated to a driving force by varying the amplitude of the
external oscillating input flow strength A with a constant frequency
fi ¼ 0:1Hz.

In Fig. 10, it is evident a difference taking into account in
both the plots two experimental conditions {A ¼ 0:1ml=min,
fi ¼ 0:1Hz} and {A ¼ 0:15ml=min, fi ¼ 0:1Hz}. In particular, in
Fig. 10(a) for A ¼ 0:1 the average of the velocity range in the case
of human cells is greater than the one of the yeast cells, conversely
in the second condition A ¼ 0:15. In Fig. 10(b), after the normali-
zation by the hNp(t)i, the values of the velocity range in the case of
human cells are greater than the one of the yeast cells in both
experiments. The value of the average velocity range for the silica
beads is always the lowest. That can be correlated to the computa-
tional issues and the physical property of the particles .48

Assuming the density of the fluid and the particles close, after
a transitory time, the particles’ velocity follows the value of the
fluid stream. In our experimental setup, the imposed input flow
rate is oscillatory but the time needed to reach the maximum (to
overcome the transitory phase) is greater than the oscillatory time.
A difference of two orders between the stream velocity and the par-
ticles’ velocity is obtained. Then, for example, in the case of
{A ¼ 0:1ml=min} that corresponds, based on the micro-channel
section, to a velocity stream of v ¼ 16mm=s, the maximum of the
average of the velocity trend hVy(t)i is for the human cell
0:2mm=s, for the yeast cells 0:14mm=s, and for the silica beads
0:03mm=s. The value of hVy(t)i obtained by computing the
average in the space of Vy(i, j, t) is affected by the number of
moving particles in the area investigated: the greater the number of
particles, the greater the value of the average velocity. In our experi-
mental campaigns, three classes of particles in different concentra-
tions were considered, and due to the oscillatory input strength, the
number of particles in the area investigated is continuously chang-
ing. It is worth noticing, as reported in Table III, that the difference
in the average number of particles is significant comparing the
human cells vs the yeast cells and the silica beads. Even if the loss
of the absolute value of the mean velocity range, the value of the
velocity range after the normalization by the hNp(t)i in the case of
the human cells is greater than the one of yeast and silica beads
that is coherent to the theoretical expectation. Indeed having the
fluid and the particle at different densities, the buoyancy does not
control ideally the particles’ displacement in the stream and a dif-
ference in velocity can be detected. Based on the value of particles
density reported in Table I and knowing the PBS density value

TABLE III. The average number of micro-particles ⟨Np(t)⟩ counted through the developed algorithm per experiment.

Micro-particles Frequency (Hz)

Amplitude (ml/min)

0 0.03 0.04 0.05 0.07 0.1 0.15 0.2

Yeast cells 0.1 192 165 160 164 178 198 224 211
0.2 … … … 216 233 227 … 231

Silica Beads 0.1 … … 336 351 318 381 326 …
Human cells 0.1 … … 15 20 12 45 14 …

FIG. 7. For all the micro-particles, the velocity trends hVy (t)i obtained in the
experimental condition with {A ¼ 0:1 ml=min, fi ¼ 0:1 Hz}.
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equal to 1072 kg=m3, the human cells would be faster than the
yeast cells and the silica beads. Additionally, due to the friction,
greater the diameter greater would be the particle velocity. In par-
ticular, it is noticeable that the normalized parameter
(RangehVy(t)i=hNp(t)i) increases as the amplitude of the flow
increases. A parabolic interpolation of the points was performed
per particles type, as shown for both the plots in Fig. 10. The
parameter R2, reported in the picture with the fitting equations, is
always greater than 0:90 confirming the quality of the fitting. It is
evident that the normalized parameter (RangehVy(t)i=hNp(t)i) is
sensitive to the dimensions of the micro-particles; indeed, the
values of the human cells (16 μm) are one order magnitude greater
and increase faster than yeast cells (5 μm) and silica beads (6 μm).
That leads to an immediate classification between the two classes of

live cells. Additionally, it is worth to evidence a significant differ-
ence in the parabolic interpolation obtained for the yeast cells (live
cells) and silica beads (synthetic particles), in spite of having the
same dimension. That evidences the possibility of a differentiation
correlated to other physical properties as the particles density and
surface tissues.

To investigate the effect that can be induced in the process by
changing the frequency fi of the external oscillating input flow
strength, the graph of Fig. 11(a), reports the normalized parameter
(RangehVy(t)i=hNp(t)i) for the experiments with yeast cells (5 μm).
In particular, the two curves are, respectively, for the driving force
frequencies fi [ {0:1; 0:2}Hz and each point per curve is correlated
to a driving force setting by varying the amplitude of the external
oscillating input flow strength A. Also in this case, a good

FIG. 8. DPIV-based analysis in the experimental condition with {A ¼ 0:15ml=min, fi ¼ 0:1 Hz} for the yeast cells. (a) The trend of the hVy(t)i compared with the trend of
the Np(t). The frames and the relative velocity vector maps were reported in the conditions in which (b) the number of particles detected is maximum [Np(t1) ¼ 300] and
the particles’ velocity field is near 0 mm=s; (c) the number of particles minimum [Np(t2) ¼ 150] and the particles’ velocity field negative (the particles are flowing from the
bottom to the top) and (d) the number of particles minimum [Np(t3) ¼ 150] and the particles’ velocity field positive (the particles are flowing from the top to the bottom).
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interpolation with a parabolic function was obtained: the normalized
parameter (RangehVy(t)i=hNp(t)i) rises as the amplitude of the
external oscillating input flow increases. The curves shift detected
can be associated with the input frequency fi: lower is the input fre-
quency, greater is the signal range. This can be correlated to the

inertial of the micro-particles flow, a slower input flow can be propa-
gated more efficiently. Summarize, being the curves in Fig. 10(b), far
apart for each other, it is worth to notice the possibility to detect,
respectively, the difference in density of the three micro-particles and
the effect determined by the driving force frequency.

FIG. 9. The time course and the spectral analysis of the velocity trends extracted by the DPIV-based algorithm (in black) and the photo-detector signals (in blue) in the
experimental conditions with {A ¼ 0:1� ml=min, fi ¼ {0:1; 0:2} Hz} for the yeast cells.

FIG. 10. (a) The parameter (RangehVy (t)i) and (b) the normalized parameter (RangehVy (t)i=hNp(t)i) varying the oscillating input flow strength at the inlet A for the three
micro-particle types at fi ¼ 0:1 Hz.
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D. Micro-particles classification by hydrodynamic
response in frequency

The first experiment investigated in frequency domain was the
hVy(t)i for the single-phase PBS solution. It was fed at the inlet of
the channel with an oscillating input flow with a frequency of fi ¼
0:1Hz and an amplitude of A ¼ 0:1ml=min. The frequency peaks

identified were f pk [ {6; 7:5}Hz. They were correlated to the PBS
background flow, assumed as process artifacts and neglected in the
following data analysis.

The micro-particles hydrodynamic response in the frequency
domain was evaluated by computing the spectrum of the velocity
signal hVy(t)i and of the velocity signal normalized for the average

FIG. 11. The normalized parameters (a) (RangehVy (t)i=hNp(t)i) and (b) (Apk ) varying the oscillating input flow strength at the inlet A for the yeast cells at the input fre-
quencies fin [ {0:1; 0:2} Hz.

FIG. 12. Peak amplitude at f pk ¼ 0:1 Hz obtained by applying the spectrum to (a) the parameter (hVy (t)i) and (b) the normalized parameter (hVy (t)i=hNp(t)i) varying the
oscillating input flow strength A at the inlet for the three micro-particles types at fi ¼ 0:1 Hz.

Biomicrofluidics ARTICLE scitation.org/journal/bmf

Biomicrofluidics 17, 014105 (2023); doi: 10.1063/5.0138587 17, 014105-12

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/bmf


number of micro-particles. Figures 12(a) and 12(b) show the values
of peak amplitude (Apk) detected at f pk ¼ 0:1Hz by applying the
spectrum at the velocity signal hVy(t)i and at normalized parameter
(hVy(t)i/hNp(t)i) per cell type varying A. In the spectra at the low
frequency range in Fig. 12, the dominant peak detected is at
f pk ¼ 0:1Hz, consistently with the frequency of the oscillating
input flow considered fi ¼ 0:1Hz. The amplitude of the peak at
f pk ¼ 0:1Hz increases with the rise of the flow strength A.

Considering all together the behaviors in the low frequency
range, it is possible to conclude that for high external flow, the fre-
quency induced by the pump is driving the hydrodynamic process,
no other dynamics are relevant.

Extending this study to other experiments with the human
cells and silica beads, similar behaviors were identified. In the
experiments with the yeast cells where the oscillating input flow
was set at fi ¼ 0:2Hz, the dominant peaks in the low frequency
were detected at f pk ¼ 0:2Hz.

In Fig. 11(b), for the yeast cells, the amplitude of peaks fpk [
{0:1; 0:2}Hz normalized with respect to the average number
of micro-particles (hNp(t)i) for the experiments with fi [
{0:1; 0:2}Hz is compared. In all the experiments, the normalized
peak amplitude f pk increases with external oscillating flow A and
the values have been interpolated through parabolic functions. The
amplitude of the normalized peaks for the experiments with
human cells is bigger than those related to the other type of micro-
particles; very small amplitudes with silica beads were observed.
That enforces the results of the analysis in time domain and under-
lines the role played by the micro-particles physical properties in
the hydrodynamic process.

IV. CONCLUSIONS

In this paper, the combination of two algorithms, a cell count-
ing algorithm and a velocity algorithm, based on a Digital Particle
Image Velocimetry (DPIV) method to investigate the collective
behavior of micro-particles in response to hydrodynamic stimuli is
presented.

The biological fluids were composed by three types of micro-
particles, of different nature and sizes: the yeast cells (5 μm), the
human cells (16 μm), and the silica beads (6 μm). They were
injected in a micro-channel with different oscillating flows and the
process was monitored in an investigated area by using an optical
setup. The procedure proposed for the data analysis, designed to
run automatically and adaptable to different experimental condi-
tions, was based on the DPIV-based algorithm to compute the
trend of the particle migration velocity in the investigated area and
the custom counting algorithm to obtain the instantaneous micro-
particles number. The velocity signals normalized with respect to
the number of micro-particles were analyzed in both time and fre-
quency domains showing the difference in the particles hydrody-
namic responses to external stimuli and the possibility to associate
them with the micro-particles physical properties. The frequency
and the amplitude of the external oscillating driving force affect the
micro-particles’ flows and their setting can be modulated for stabi-
lizing and investigating the micro-particles interaction.

Additionally, the signals collected by the photo-detector were
compared with the velocity trends obtained by the DPIV-based

algorithm as a proof of concept for a further simplification and
speed-up of the data acquisition and analysis based on a simpler
optical detection than the video recording. This could open the
way to a greater simplification of the real-time process analysis.

The obtained results confirm fully the feasibility of the meth-
odology to be integrated into a microfluidic Lab-on-Chip device
for the investigation of the micro-particles interaction in pathologi-
cal conditions. Rapid detection and characterization of different
kinds of micro-particles would accelerate the diagnosis process and
the development of targeted therapies. In future developments,
thanks to the flexibility of the used platform, the algorithm will be
optimized to be suitable for real-time detection in embedded
systems.
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